Influence of Giant CCN on warm rain processes in the ECHAM5 GCM

نویسنده

  • R. Posselt
چکیده

Increased Cloud Condensation Nuclei (CCN) load due to anthropogenic activity might lead to non-precipitating clouds because the cloud drops become smaller (for a constant liquid water content) and, therefore, less efficient in rain formation (aerosol indirect effect). Adding giant CCN (GCCN) into such a cloud can initiate precipitation (namely, drizzle) and, therefore, might counteract the aerosol indirect effect. The effect of GCCN on global climate on warm clouds and precipitation within the ECHAM5 General Circulation Model (GCM) is investigated. Therefore, the newly introduced prognostic rain scheme (Posselt and Lohmann, 2007) is applied so that GCCN are directly activated into rain drops. The ECHAM5 simulations with incorporated GCCN show that precipitation is affected only locally. On the global scale, the precipitation amount does not change. Cloud properties like total water (liquid + rain water) and cloud drop number show a larger sensitivity to GCCN. Depending on the amount of added GCCN, the reduction of total water and cloud drops account for up to 20 % compared to the control run without GCCN. Thus, the incorporation of the GCCN accelerate the hydrological cycle so that clouds precipitate faster (but not more) and less condensed water is accumulated in the atmosphere. An estimate of the anthropogenic aerosol indirect effect on the climate is obtained by comparing simulations for presentday and pre-industrial climate. The introduction of the prognostic rain scheme lowered the anthropogenic aerosol indirect effect significantly compared to the standard ECHAM5 with the diagnostic rain scheme. The incorporation of the GCCN changes the model state, especially the cloud properties like TWP and Nl. The precipitation changes only locally but globally the precipitation is unaffected because it has to Correspondence to: R. Posselt ([email protected]) equal the global mean evaporation rate. Changing the cloud properties leads to a local reduction of the aerosol indirect effect and, hence, partly compensating for the increased anthropogenic CCN concentrations in that regions. Globally, the aerosol indirect effect is nearly the same for all simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Giant CCN on warm rain processes

Increased Cloud Condensation Nuclei (CCN) load due to anthropogenic activity might lead to non-precipitating clouds because the cloud drops become smaller (for a constant liquid water content) and, therefore, less efficient in rain formation (aerosol indirect effect). Adding giant CCN (GCCN) into such a cloud can initiate precipitation (namely, 5 drizzle) and, therefore, might counteract the ae...

متن کامل

Interactive comment on “Introduction of prognostic rain in ECHAM5: design and Single Column Model simulations” by R. Posselt and U. Lohmann

p. 14679, l. 21: The reviewer is right by stating that a diagnostic treatment of snow is especially worrisome because of lower fall speed of snow and of the larger distances from the cloud to the surface. We are aware of that and the extension of the prognostic treatment to snow is work in progress. But as the current study focuses on warm rain processes and the effect of Giant CCN (like sea sa...

متن کامل

Prognostic precipitation with three liquid water classes in the ECHAM5–HAM GCM

A new parameterization with three prognostic liquid water classes was implemented into the general circulation model (GCM) ECHAM5 with the aerosol module HAM in order to improve the global representation of rain formation in marine stratiform clouds. The additionally introduced drizzle class improves the physical representation of the droplet spectrum and, more importantly, improves the microph...

متن کامل

Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM

Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate aerosol effects on convective clouds by extending the double-moment cloud microphysics scheme developed for stratiform clouds, which is coupled to the HAM double-moment aerosol scheme, to convect...

متن کامل

Introduction of prognostic rain in ECHAM5: design and Single Column Model simulations

Prognostic equations for the rain mass mixing ratio and the rain drop number concentration are introduced into the large-scale cloud microphysics parameterization of the ECHAM5 general circulation model (ECHAM5-RAIN). For this a rain flux from one level to the next with the appropriate fall speed is introduced. This maintains rain water in 5 the atmosphere to be available for the next time step...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008